Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 154
Filtrar
1.
J Vis Exp ; (203)2024 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-38345255

RESUMEN

Single-cell sequencing has enabled the mapping of heterogeneous cell populations in the stroma of hematopoietic organs. These methodologies provide a lens through which to study previously unresolved heterogeneity at steady state, as well as changes in cell type representation induced by extrinsic stresses or during aging. Here, we present step-wise protocols for the isolation of high-quality stromal cell populations from murine and human thymus, as well as murine bone and bone marrow. Cells isolated through these protocols are suitable for generating high-quality single-cell multiomics datasets. The impacts of sample digestion, hematopoietic lineage depletion, FACS analysis/sorting, and how these factors influence compatibility with single-cell sequencing are discussed here. With examples of FACS profiles indicating successful and inefficient dissociation and downstream stromal cell yields in post-sequencing analysis, recognizable pointers for users are provided. Considering the specific requirements of stromal cells is crucial for acquiring high-quality and reproducible results that can advance knowledge in the field.


Asunto(s)
Médula Ósea , Células del Estroma , Humanos , Animales , Ratones , Citometría de Flujo , Células del Estroma/metabolismo , Células Madre Hematopoyéticas , Células de la Médula Ósea/metabolismo
2.
N Engl J Med ; 389(18): 1726-1727, 2023 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-37913517

Asunto(s)
Timectomía , Timo , Humanos , Adulto
3.
Blood Adv ; 7(22): 6964-6973, 2023 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-37748049

RESUMEN

Tissue-resident myeloid (TRM) cells in adults have highly variable lifespans, and may be derived from early embryonic yolk sac, fetal liver, or bone marrow. Some of these TRM cells are known pathogenic participants in congenital and acquired diseases. Myeloablative conditioning and hematopoietic stem cell transplantation can replace long-lived brain TRM cells, resulting in clinical improvements in metabolic storage diseases. With the advent of antibody-drug conjugate (ADC)-targeted cell killing as a cell-selective means of transplant conditioning, we assessed the impact of anti-CD45-ADC on TRM cells in multiple tissues. Replacement of TRM cells ranged from 40% to 95% efficiencies in liver, lung, and skin tissues, after a single anti-CD45-ADC dose and bone marrow hematopoietic cell transfer. Of note, the population size of TRM cells in tissues returned to pretreatment levels, suggesting a regulated control of TRM cell abundance. As expected, brain microglia were not affected, but brain monocytes and macrophages were 50% replaced. Anti-CD45-ADC and adoptive cell transfer were then tested in the chronic acquired condition, atherosclerosis exacerbated by Tet2 mutant clonal hematopoiesis. Plaque-resident myeloid cells were efficiently replaced with anti-CD45-ADC and wild-type bone marrow cells. Notably, this reduced existent atherosclerotic plaque burden. Overall, these results indicate that the anti-CD45-ADC clears both hematopoietic stem and TRM cells from their niches, enabling cell replacement to achieve disease modification in a resident myeloid cell-driven disease.


Asunto(s)
Inmunoconjugados , Adulto , Humanos , Inmunoconjugados/farmacología , Macrófagos , Monocitos , Médula Ósea , Microglía
4.
bioRxiv ; 2023 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-37732224

RESUMEN

Tissue resident myeloid cells (TRM) in adults have highly variable lifespans and may be derived from early embryonic yolk sac, fetal liver or bone marrow. Some of these TRM are known pathogenic participants in congenital and acquired diseases. Myeloablative conditioning and hematopoietic stem cell transplant can replace long-lived brain TRM resulting in clinical improvements in metabolic storage diseases. With the advent of antibody-drug-conjugate (ADC) targeted cell killing as a cell selective means of transplant conditioning, we assessed the impact of anti-CD45-ADC on TRM in multiple tissues. Replacement of TRM ranged from 40 to 95 percent efficiencies in liver, lung, and skin tissues, after a single anti-CD45-ADC dose and bone marrow hematopoietic cell transfer. Of note, the population size of TRM in tissues returned to pre-treatment levels suggesting a regulated control of TRM abundance. As expected, brain, microglia were not affected, but brain monocytes and macrophages were 50% replaced. Anti-CD45-ADC and adoptive cell transfer were then tested in the chronic acquired condition, atherosclerosis exacerbated by Tet2 mutant clonal hematopoiesis. Plaque resident myeloid cells were efficiently replaced with anti-CD45-ADC and wild-type bone marrow cells. Notably, this reduced existent atherosclerotic plaque burden. Overall, these results indicate that anti-CD45-ADC clears both HSC and TRM niches enabling cell replacement to achieve disease modification in a resident myeloid cell driven disease.

5.
N Engl J Med ; 389(5): 406-417, 2023 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-37530823

RESUMEN

BACKGROUND: The function of the thymus in human adults is unclear, and routine removal of the thymus is performed in a variety of surgical procedures. We hypothesized that the adult thymus is needed to sustain immune competence and overall health. METHODS: We evaluated the risk of death, cancer, and autoimmune disease among adult patients who had undergone thymectomy as compared with demographically matched controls who had undergone similar cardiothoracic surgery without thymectomy. T-cell production and plasma cytokine levels were also compared in a subgroup of patients. RESULTS: After exclusions, 1420 patients who had undergone thymectomy and 6021 controls were included in the study; 1146 of the patients who had undergone thymectomy had a matched control and were included in the primary cohort. At 5 years after surgery, all-cause mortality was higher in the thymectomy group than in the control group (8.1% vs. 2.8%; relative risk, 2.9; 95% confidence interval [CI], 1.7 to 4.8), as was the risk of cancer (7.4% vs. 3.7%; relative risk, 2.0; 95% CI, 1.3 to 3.2). Although the risk of autoimmune disease did not differ substantially between the groups in the overall primary cohort (relative risk, 1.1; 95% CI, 0.8 to 1.4), a difference was found when patients with preoperative infection, cancer, or autoimmune disease were excluded from the analysis (12.3% vs. 7.9%; relative risk, 1.5; 95% CI, 1.02 to 2.2). In an analysis involving all patients with more than 5 years of follow-up (with or without a matched control), all-cause mortality was higher in the thymectomy group than in the general U.S. population (9.0% vs. 5.2%), as was mortality due to cancer (2.3% vs. 1.5%). In the subgroup of patients in whom T-cell production and plasma cytokine levels were measured (22 in the thymectomy group and 19 in the control group; mean follow-up, 14.2 postoperative years), those who had undergone thymectomy had less new production of CD4+ and CD8+ lymphocytes than controls (mean CD4+ signal joint T-cell receptor excision circle [sjTREC] count, 1451 vs. 526 per microgram of DNA [P = 0.009]; mean CD8+ sjTREC count, 1466 vs. 447 per microgram of DNA [P<0.001]) and higher levels of proinflammatory cytokines in the blood. CONCLUSIONS: In this study, all-cause mortality and the risk of cancer were higher among patients who had undergone thymectomy than among controls. Thymectomy also appeared be associated with an increased risk of autoimmune disease when patients with preoperative infection, cancer, or autoimmune disease were excluded from the analysis. (Funded by the Tracey and Craig A. Huff Harvard Stem Cell Institute Research Support Fund and others.).


Asunto(s)
Enfermedades Autoinmunes , Timectomía , Humanos , Adulto , Timectomía/efectos adversos , Timo , Linfocitos T CD8-positivos , Citocinas , Enfermedades Autoinmunes/complicaciones
6.
Blood Adv ; 7(21): 6685-6701, 2023 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-37648673

RESUMEN

Patients with relapsed or refractory T-cell acute lymphoblastic leukemia (T-ALL) have a poor prognosis with few therapeutic options. With the goal of identifying novel therapeutic targets, we used data from the Dependency Map project to identify dihydroorotate dehydrogenase (DHODH) as one of the top metabolic dependencies in T-ALL. DHODH catalyzes the fourth step of de novo pyrimidine nucleotide synthesis. Small molecule inhibition of DHODH rapidly leads to the depletion of intracellular pyrimidine pools and forces cells to rely on extracellular salvage. In the absence of sufficient salvage, this intracellular nucleotide starvation results in the inhibition of DNA and RNA synthesis, cell cycle arrest, and, ultimately, death. T lymphoblasts appear to be specifically and exquisitely sensitive to nucleotide starvation after DHODH inhibition. We have confirmed this sensitivity in vitro and in vivo in 3 murine models of T-ALL. We identified that certain subsets of T-ALL seem to have an increased reliance on oxidative phosphorylation when treated with DHODH inhibitors. Through a series of metabolic assays, we show that leukemia cells, in the setting of nucleotide starvation, undergo changes in their mitochondrial membrane potential and may be more highly dependent on alternative fuel sources. The effect on normal T-cell development in young mice was also examined to show that DHODH inhibition does not permanently damage the developing thymus. These changes suggest a new metabolic vulnerability that may distinguish these cells from normal T cells and other normal hematopoietic cells and offer an exploitable therapeutic opportunity. The availability of clinical-grade DHODH inhibitors currently in human clinical trials suggests a potential for rapidly advancing this work into the clinic.


Asunto(s)
Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Humanos , Animales , Ratones , Dihidroorotato Deshidrogenasa , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/genética , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/tratamiento farmacológico , Inhibidores Enzimáticos/farmacología , Linfocitos T/metabolismo , Nucleótidos/uso terapéutico
7.
Biol Sex Differ ; 14(1): 28, 2023 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-37173796

RESUMEN

BACKGROUND: Evidence from clinical research indicates that men and women can differ in response to drug treatment. The knowledge database Janusmed Sex and Gender was developed to illuminate potential sex and gender differences in drug therapy and, therefore, achieve a better patient safety. The database contains non-commercial evidence-based information on drug substances regarding sex and gender aspects in patient treatment. Here, we describe our experiences and reflections from collecting, analyzing, and evaluating the evidence. JANUSMED SEX AND GENDER: Substances have been systematically reviewed and classified in a standardized manner. The classification considers clinically relevant sex and gender differences based on available evidence. Mainly biological sex differences are assessed except for gender differences regarding adverse effects and compliance. Of the 400 substances included in the database, clinically relevant sex differences were found for 20%. Sex-divided data were missing for 22% and no clinically relevant differences were found for more than half of the substances (52%). We noted that pivotal clinical studies often lack sex analyses of efficacy and adverse effects, and post-hoc analyzes are performed instead. Furthermore, most pharmacokinetic analyses use weight correction, but medicines are often prescribed in standard doses. In addition, few studies have sex differences as a primary outcome and some pharmacokinetic analyses are unpublished, which may complicate the classification of evidence. CONCLUSIONS: Our work underlines the need of sex and gender analyses, and sex-divided data in drug treatment, to increase the knowledge about these aspects in drug treatment and contribute to a more individualized patient treatment.


Asunto(s)
Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Humanos , Masculino , Femenino , Factores Sexuales
8.
Methods Mol Biol ; 2567: 191-201, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36255703

RESUMEN

T cells go through most of their maturation in the thymus, and the stromal constituents of the thymus are therefore essential for T cell differentiation. The thymic stroma secretes the factors that recruit and sustain T cell progenitors, and they also partake in the shaping of a functional and tolerant T cell receptor repertoire. The damage incurred to the thymic stromal compartment by bone marrow conditioning regimens as well as by the natural aging process impairs T cell production. Yet little is known of how to prevent or reverse this damage. The development of high-throughput, single-cell analysis technologies has enabled better characterization of thymic stromal cells. This does however require tissue dissociation protocols optimized for stromal cell isolation. In this chapter, we detail the methodology of harvesting thymus stromal cells from human and murine tissue for downstream applications such as flow cytometric analysis and single-cell RNA sequencing.


Asunto(s)
Células del Estroma , Timo , Humanos , Ratones , Animales , Linfocitos T , Diferenciación Celular , Receptores de Antígenos de Linfocitos T
9.
Nat Methods ; 19(12): 1622-1633, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36424441

RESUMEN

Tissue function depends on cellular organization. While the properties of individual cells are increasingly being deciphered using powerful single-cell sequencing technologies, understanding their spatial organization and temporal evolution remains a major challenge. Here, we present Image-seq, a technology that provides single-cell transcriptional data on cells that are isolated from specific spatial locations under image guidance, thus preserving the spatial information of the target cells. It is compatible with in situ and in vivo imaging and can document the temporal and dynamic history of the cells being analyzed. Cell samples are isolated from intact tissue and processed with state-of-the-art library preparation protocols. The technique therefore combines spatial information with highly sensitive RNA sequencing readouts from individual, intact cells. We have used both high-throughput, droplet-based sequencing as well as SMARTseq-v4 library preparation to demonstrate its application to bone marrow and leukemia biology. We discovered that DPP4 is a highly upregulated gene during early progression of acute myeloid leukemia and that it marks a more proliferative subpopulation that is confined to specific bone marrow microenvironments. Furthermore, the ability of Image-seq to isolate viable, intact cells should make it compatible with a range of downstream single-cell analysis tools including multi-omics protocols.


Asunto(s)
Diagnóstico por Imagen , Leucemia , Humanos , Análisis de Secuencia de ARN , Recuento de Células , Biblioteca de Genes , Microambiente Tumoral
10.
JBMR Plus ; 6(8): e10657, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35991530

RESUMEN

Estrogen has pronounced effects on the immune system, which also influences bone homeostasis. In recent years, stromal cells in lymphoid organs have gained increasing attention as they not only support the regulation of immune responses but also affect bone remodeling. A conditional knockout mouse model where estrogen receptor alpha (ERα) is deleted in CCL19-expressing stromal cells (Ccl19-Cre ERα fl/fl mice) was generated and bone densitometry was performed to analyze the importance of stromal cell-specific ERα signaling on the skeleton. Results showed that female Ccl19-Cre ERα fl/fl mice display reduced total bone mineral density and detailed X-ray analyses revealed that ERα expression in CCL19-expressing stromal cells is important for trabecular but not cortical bone homeostasis. Further analysis showed that the trabecular bone loss is caused by increased osteoclastogenesis. Additionally, the bone formation rate was reduced; however, the expression of osteoprogenitor genes was not altered. Analysis of the bone marrow stromal cell compartment revealed a deletion of ERα in a subgroup of CXCL12-abundant reticular (CAR) cells resulting in increased secretion of the pro-osteoclastogenic chemokine CXCL12. In conclusion, this study reveals the importance of ERα signaling in CAR cells for bone health. © 2022 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.

12.
Cell Rep Med ; 3(6): 100657, 2022 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-35688160

RESUMEN

Understanding the complete immune cell composition of human neuroblastoma (NB) is crucial for the development of immunotherapeutics. Here, we perform single-cell RNA sequencing (scRNA-seq) on 19 human NB samples coupled with multiplex immunohistochemistry, survival analysis, and comparison with normal fetal adrenal gland data. We provide a comprehensive immune cell landscape and characterize cell-state changes from normal tissue to NB. Our analysis reveals 27 immune cell subtypes, including distinct subpopulations of myeloid, NK, B, and T cells. Several different cell types demonstrate a survival benefit. In contrast to adult cancers and previous NB studies, we show an increase in inflammatory monocyte cell state when contrasting normal and tumor tissue, while no differences in cytotoxicity and exhaustion score for T cells, nor in Treg activity, are observed. Our receptor-ligand interaction analysis reveals a highly complex interactive network of the NB microenvironment from which we highlight several interactions that we suggest for future therapeutic studies.


Asunto(s)
Neuroblastoma , Adulto , Humanos , Inmunohistoquímica , Neuroblastoma/genética , Microambiente Tumoral/genética
13.
Intern Emerg Med ; 17(5): 1395-1404, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35604515

RESUMEN

Sociocultural gender is a complex construct encompassing different aspects of individuals' life, whereas sex refers to biological factors. These terms are often misused, although they impact differently on individuals' health. Recognizing the role of sex and gender on health status is fundamental in the pursuit of a personalized medicine. Aim of the current study was to investigate the awareness in approaching clinical and research questions on the impact of sex and gender on health among European internists. Clinicians affiliated with the European Federation of Internal Medicine from 33 countries participated to the study on a voluntary basis between January 1st, 2018 and July 31st, 2019. Internists' awareness and knowledge on sex and gender issues in clinical medicine were measured by an online anonymized 7-item survey. A total of 1323 European internists responded to the survey of which 57% were women, mostly young or middle-aged (78%), and practicing in public general medicine services (74.5%). The majority (79%) recognized that sex and gender are not interchangeable terms, though a wide discrepancy exists on what clinicians think sex and gender concepts incorporate. Biological sex and sociocultural gender were recognized as determinants of health mainly in cardiovascular and autoimmune/rheumatic diseases. Up to 80% of respondents acknowledged the low participation of female individuals in trials and more than 60% the lack of sex-specific clinical guidelines. Internists also express the willingness of getting more knowledge on the impact of sex and gender in cerebrovascular/cognitive and inflammatory bowel diseases. Biological sex and sociocultural gender are factors influencing health and disease. Although awareness and knowledge remain suboptimal across European internists, most acknowledge the underrepresentation of female subjects in trials, the lack of sex-specific guidelines and the need of being more informed on sex and gender-based differences in diseases.


Asunto(s)
Medicina Interna , Médicos , Europa (Continente) , Femenino , Humanos , Medicina Interna/métodos , Masculino , Persona de Mediana Edad , Factores Sexuales , Encuestas y Cuestionarios
14.
Nat Immunol ; 23(4): 605-618, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35352063

RESUMEN

Autonomic nerves control organ function through the sympathetic and parasympathetic branches, which have opposite effects. In the bone marrow, sympathetic (adrenergic) nerves promote hematopoiesis; however, how parasympathetic (cholinergic) signals modulate hematopoiesis is unclear. Here, we show that B lymphocytes are an important source of acetylcholine, a neurotransmitter of the parasympathetic nervous system, which reduced hematopoiesis. Single-cell RNA sequencing identified nine clusters of cells that expressed the cholinergic α7 nicotinic receptor (Chrna7) in the bone marrow stem cell niche, including endothelial and mesenchymal stromal cells (MSCs). Deletion of B cell-derived acetylcholine resulted in the differential expression of various genes, including Cxcl12 in leptin receptor+ (LepR+) stromal cells. Pharmacologic inhibition of acetylcholine signaling increased the systemic supply of inflammatory myeloid cells in mice and humans with cardiovascular disease.


Asunto(s)
Acetilcolina , Hematopoyesis , Animales , Linfocitos B , Colinérgicos , Hematopoyesis/genética , Ratones , Nicho de Células Madre
15.
J Endocrinol ; 253(2): 75-84, 2022 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-35256537

RESUMEN

Selective estrogen receptor modulators (SERMs) act as estrogen receptor (ER) agonists or antagonists in a tissue-specific manner. ERs exert effects via nuclear actions but can also utilize membrane-initiated signaling pathways. To determine if membrane-initiated ERα (mERα) signaling affects SERM action in a tissue-specific manner, C451A mice, lacking mERα signaling due to a mutation at palmitoylation site C451, were treated with Lasofoxifene (Las), Bazedoxifene (Bza), or estradiol (E2), and various tissues were evaluated. Las and Bza treatment increased uterine weight to a similar extent in C451A and control mice, demonstrating mERα-independent uterine SERM effects, while the E2 effect on the uterus was predominantly mERα-dependent. Las and Bza treatment increased both trabecular and cortical bone mass in controls to a similar degree as E2, while both SERM and E2 treatment effects were absent in C451A mice. This demonstrates that SERM effects, similar to E2 effects, in the skeleton are mERα-dependent. Both Las and E2 treatment decreased thymus weight in controls, while neither treatment affected the thymus in C451A mice, demonstrating mERα-dependent SERM and E2 effects in this tissue. Interestingly, both SERM and E2 treatments decreased the total body fat percent in C451A mice, demonstrating the ability of these treatments to affect fat tissue in the absence of functional mERα signaling. In conclusion, mERα signaling can modulate SERM responses in a tissue-specific manner. This novel knowledge increases the understanding of the mechanisms behind SERM effects and may thereby facilitate the development of new improved SERMs.


Asunto(s)
Receptor alfa de Estrógeno , Moduladores Selectivos de los Receptores de Estrógeno , Animales , Estradiol/farmacología , Receptor alfa de Estrógeno/genética , Receptor alfa de Estrógeno/metabolismo , Estrógenos/farmacología , Femenino , Ratones , Moduladores Selectivos de los Receptores de Estrógeno/farmacología , Transducción de Señal
16.
Am J Physiol Endocrinol Metab ; 322(4): E344-E354, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35156423

RESUMEN

The gut microbiome has the capacity to regulate bone mass. The aim of this study was to develop a nutritional synbiotic dietary assemblage at an optimal dose to maintain bone mass in ovariectomized (Ovx) mice. We performed genomic analyses and in vitro experiments in a large collection of bacterial and fungal strains (>4,000) derived from fresh fruit and vegetables to identify candidates with the synergistic capacity to produce bone-protective short-chain fatty acids (SCFA) and vitamin K2. The candidate SBD111-A, composed of Lactiplantibacillus plantarum, Levilactobacillus brevis, Leuconostoc mesenteroides, Pseudomonas fluorescens, and Pichia kudriavzevii together with prebiotic dietary fibers, produced high levels of SCFA in vitro and protected against Ovx-induced trabecular bone loss in a dose-dependent manner in mice. Metagenomic sequencing revealed that SBD111-A changed the taxonomic composition and enriched specific pathways for synthesis of bone-protective SCFA, vitamin K2, and branched-chain amino acids in the gut microbiome.NEW & NOTEWORTHY We performed genomic analyses and in vitro experiments in a collection of bacterial and fungal strains. We identified a combination (SBD111-A) that produced high levels of SCFA in vitro and protected against ovariectomy-induced bone loss in a dose-dependent manner in mice. Metagenomic sequencing revealed that SBD111-A changed the taxonomic composition and function of the gut microbiome and enriched pathways for synthesis of bone-protective SCFA, vitamin K2, and branched-chain amino acids.


Asunto(s)
Hueso Esponjoso , Simbióticos , Aminoácidos de Cadena Ramificada , Animales , Bacterias , Ácidos Grasos Volátiles , Femenino , Humanos , Ratones , Ovariectomía , Vitamina K 2
17.
Lupus ; 31(2): 143-154, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35062848

RESUMEN

Osteoporosis is a common secondary complication in patients with systemic lupus erythematosus (SLE). Current osteoporosis treatment with bisphosphonates has some negative side effects and there is a lack of data regarding newer treatments options for SLE associated osteoporosis. The tissue-selective estrogen complex (TSEC) containing conjugated estrogens and the selective estrogen receptor modulator bazedoxifene (Bza) is approved for treatment of postmenopausal vasomotor symptoms and prevention of osteoporosis. However, it has not been evaluated for treatment of osteoporosis in postmenopausal SLE patients. Ovariectomized MRL/lpr mice constitute a model for postmenopausal lupus that can be used for osteoporosis studies. We used this model in a set of experiments where the mice were treated with different doses of 17ß-estradiol-3-benzoate (E2), Bza, or TSEC (E2 plus Bza), administered in the early or late phases of disease development. The skeleton was analyzed by dual-energy X-ray absorptiometry, peripheral quantitative computed tomography, and high-resolution microcomputed tomography. The lupus disease was assessed by determination of proteinuria, hematuria, and lupus disease markers in serum. Treatment with medium dose TSEC administered in early disease protected ovariectomized MRL/lpr mice from trabecular bone loss, while there were no differences in lupus disease parameters between treatments. This is the first experimental study to investigate TSEC as a potential new therapy for osteoporosis in postmenopausal SLE.


Asunto(s)
Lupus Eritematoso Discoide , Lupus Eritematoso Sistémico , Osteoporosis , Animales , Estrógenos/química , Estrógenos Conjugados (USP)/química , Humanos , Lupus Eritematoso Sistémico/complicaciones , Lupus Eritematoso Sistémico/tratamiento farmacológico , Ratones , Ratones Endogámicos MRL lpr , Osteoporosis/inducido químicamente , Osteoporosis/tratamiento farmacológico , Microtomografía por Rayos X
18.
Am J Physiol Endocrinol Metab ; 322(3): E211-E218, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35068191

RESUMEN

Osteoporosis is an age-dependent serious skeletal disease that leads to great suffering for the patient and high social costs, especially as the global population reaches higher age. Decreasing estrogen levels after menopause result in a substantial bone loss and increased fracture risk, whereas estrogen treatment improves bone mass in women. RSPO3, a secreted protein that modulates WNT signaling, increases trabecular bone mass and strength in the vertebrae of mice, and is associated with trabecular density and risk of distal forearm fractures in humans. The aim of the present study was to determine if RSPO3 is involved in the bone-sparing effect of estrogens. We first observed that estradiol (E2) treatment increases RSPO3 expression in bone of ovariectomized (OVX) mice, supporting a possible role of RSPO3 in the bone-sparing effect of estrogens. As RSPO3 is mainly expressed by osteoblasts in the bone, we used a mouse model devoid of osteoblast-derived RSPO3 (Runx2-creRspo3flox/flox mice) to determine if RSPO3 is required for the bone-sparing effect of E2 in OVX mice. We confirmed that osteoblast-specific RSPO3 inactivation results in a substantial reduction in trabecular bone mass and strength in the vertebrae. However, E2 increased vertebral trabecular bone mass and strength similarly in mice devoid of osteoblast-derived RSPO3 and control mice. Unexpectedly, osteoblast-derived RSPO3 was needed for the full estrogenic response on cortical bone thickness. In conclusion, although osteoblast-derived RSPO3 is a crucial regulator of vertebral trabecular bone, it is required for a full estrogenic effect on cortical, but not trabecular, bone in OVX mice. Thus, estradiol and RSPO3 regulate vertebral trabecular bone mass independent of each other.NEW & NOTEWORTHY Osteoblast-derived RSPO3 is known to be a crucial regulator of vertebral trabecular bone. Our new findings show that RSPO3 and estrogen regulate trabecular bone independent of each other, but that RSPO3 is necessary for a complete estrogenic effect on cortical bone.


Asunto(s)
Fracturas Óseas , Osteoporosis , Animales , Densidad Ósea , Hueso Esponjoso/metabolismo , Estradiol/farmacología , Estrógenos/farmacología , Femenino , Humanos , Ratones , Osteoporosis/genética , Osteoporosis/metabolismo , Ovariectomía , Trombospondinas/genética , Trombospondinas/farmacología
19.
Endocrinology ; 163(3)2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-34999782

RESUMEN

A comprehensive atlas of sex steroid distribution in multiple tissues is currently lacking, and how circulating and tissue sex steroid levels correlate remains unknown. Here, we adapted and validated a gas chromatography tandem mass spectrometry method for simultaneous measurement of testosterone (T), dihydrotestosterone (DHT), androstenedione, progesterone (Prog), estradiol, and estrone in mouse tissues. We then mapped the sex steroid pattern in 10 different endocrine, reproductive, and major body compartment tissues and serum of gonadal intact and orchiectomized (ORX) male mice. In gonadal intact males, high levels of DHT were observed in reproductive tissues, but also in white adipose tissue (WAT). A major part of the total body reservoir of androgens (T and DHT) and Prog was found in WAT. Serum levels of androgens and Prog were strongly correlated with corresponding levels in the brain while only modestly correlated with corresponding levels in WAT. After orchiectomy, the levels of the active androgens T and DHT decreased markedly while Prog levels in male reproductive tissues increased slightly. In ORX mice, Prog was by far the most abundant sex steroid, and, again, WAT constituted the major reservoir of Prog in the body. In conclusion, we present a comprehensive atlas of tissue and serum concentrations of sex hormones in male mice, revealing novel insights in sex steroid distribution. Brain sex steroid levels are well reflected by serum levels and WAT constitutes a large reservoir of sex steroids in male mice. In addition, Prog is the most abundant sex hormone in ORX mice.


Asunto(s)
Hormonas Esteroides Gonadales/análisis , Tejido Adiposo Blanco/química , Androstenodiona/análisis , Animales , Dihidrotestosterona/análisis , Estradiol/análisis , Estrona/análisis , Cromatografía de Gases y Espectrometría de Masas/métodos , Hormonas Esteroides Gonadales/sangre , Hormonas Esteroides Gonadales/farmacocinética , Masculino , Ratones , Ratones Endogámicos C57BL , Orquiectomía , Progesterona/análisis , Sensibilidad y Especificidad , Espectrometría de Masas en Tándem/métodos , Testosterona/análisis , Distribución Tisular
20.
F1000Res ; 10: 809, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34868559

RESUMEN

Estrogens are important regulators of body physiology and have major effects on metabolism, bone, the immune- and central nervous systems. The specific mechanisms underlying the effects of estrogens on various cells, tissues and organs are unclear and mouse models constitute a powerful experimental tool to define the physiological and pathological properties of estrogens. Menopause can be mimicked in animal models by surgical removal of the ovaries and replacement therapy with 17ß-estradiol in ovariectomized (OVX) mice is a common technique used to determine specific effects of the hormone. However, these studies are complicated by the non-monotonic dose-response of estradiol, when given as therapy. Increased knowledge of how to distribute estradiol in terms of solvent, dose, and administration frequency, is required in order to accurately mimic physiological conditions in studies where estradiol treatment is performed. In this study, mice were OVX and treated with physiological doses of 17ß-estradiol-3-benzoate (E2) dissolved in miglyol or PBS. Subcutaneous injections were performed every 4 days to resemble the estrus cycle in mice. Results show that OVX induces an osteoporotic phenotype, fat accumulation and impairment of the locomotor ability, as expected. Pulsed administration of physiological doses of E2 dissolved in miglyol rescues the phenotypes induced by OVX. However, when E2 is dissolved in PBS the effects are less pronounced, possibly due to rapid wash out of the steroid.


Asunto(s)
Terapia de Reemplazo de Estrógeno , Estrógenos , Animales , Sistema Nervioso Central , Femenino , Terapia de Reemplazo de Hormonas , Humanos , Ratones , Ovariectomía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...